Time Series
Analysis and
Anomaly
Detection

of
Industrial IoT Data



Part I: Foundations of Time Series Analysis
Section 1: Deconstructing Time Series Data
1.1 The Four Core Components of a Time Series
1.2 Modeling Component Interactions: Additive vs. Multiplicative Decomposition
Section 2: The Principle of Stationarity
2.1 Defining Stationarity: A Time-Invariant Process
2.2 The Importance of Stationarity in Modeling
2.3 Validating Stationarity: Visual and Statistical Tests
Table 2.1: Comparison of Stationarity Tests (ADF vs. KPSS)
2.4 Achieving Stationarity: Common Transformations
Section 3: Analyzing Temporal Dependencies with Correlation Functions
3.1 The Autocorrelation Function (ACF): Measuring Total Correlation
3.2 The Partial Autocorrelation Function (PACF): Isolating Direct Correlation
3.3 Application in Model Identification: The ARIMA Framework
Table 3.1: ACF/PACF Signature Patterns for Model Identification
Part II: A Comprehensive Guide to Time Series Anomaly Detection
Section 4: A Taxonomy of Anomalies
Section 5: Distance-Based Detection: The k-Nearest Neighbors (k-NN) Approach
5.1 Core Principle: Anomalies as Isolated Points
5.2 Algorithmic Breakdown for Anomaly Detection
5.3 Advantages and Critical Limitations
Section 6: Density-Based Detection: The Local Outlier Factor (LOF) Algorithm
6.1 Core Principle: Relative Density as an Anomaly Indicator
6.2 Algorithmic Breakdown: From Distance to a Factor Score
6.3 Interpretation and Application
6.4 Strengths and Weaknesses
Section 7: Deep Learning Approaches to Anomaly Detection
7.1 A Modern Taxonomy of Deep Learning Models
7.2 The Reconstruction Paradigm: An In-Depth Analysis of Autoencoders
7.3 Architecture Deep Dive: LSTM Autoencoders for Sequential Data
7.4 Training, Inference, and Thresholding
7.5 Survey of Advanced Architectures
Section 8: Synthesis and Recommendations
8.1 Comparative Analysis of Detection Methodologies
Table 8.1: Comparative Matrix of Anomaly Detection Algorithms
8.2 A Decision Framework for Selecting the Right Model
8.3 Future Directions and Open Research Challenges

0 NNOoO PP

10
11
11
12
13
14
15
16
18
18
18
19
20
20
21
22
22
23
23
24
25
26
27
28
28
28
29
30



Part I: Foundations of Time Series Analysis



The analysis of time series data represents a distinct and challenging subfield of data
science and statistics. Unlike cross-sectional data where observations are
independent, time series data is defined by its temporal ordering, where each data
point is recorded at a consistent interval over a period. This inherent sequence
introduces dependencies between observations, violating the assumptions of many
standard statistical methods and necessitating a specialized set of tools and
principles for analysis and modeling. The primary objectives of time series analysis are
twofold: to understand the underlying structures and patterns within the historical
data and to leverage this understanding to model the time series or detect
deviations from normal behavior. This foundational part of the report establishes
the conceptual and statistical groundwork required for any rigorous application, with
a particular focus on preparing data for the ultimate goal of anomaly detection.

1. Stationary Series (White Noise) 2. Non-Stationary Series with Trend

25 10
00
25 0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Time Time

3. Non-Stationary Series with Seasonality 4. Series with Trend and Seasonality
20

Value
Value

10

Value
Value
o

-10
0 25 50 75 100 125 150 175 200 0 25 50 16 100 125 150 175 200
Time Time

5. Cyclic Series 6. Univariate Series (Single Variable)
10 20
0
0
-10
0 2% 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time Time

Value
Value

7. Multivariate Series (Two Variables) 8. Series with a Point Anomaly

20
25

vobne 1 @ Point Anomaly
0 le 2 0

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time Time

9. Series with a Contextual Anomaly 10. Series with a Shapelet Anomaly

0 10
0 ohtextugl AnoMaly 0 Sharelet Affomaly
-10 -10

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time Time

Value
Value

Value
Value

Section 1: Deconstructing Time Series Data

The first step in any time series analysis is to decompose the data into its constituent
components. This process allows an analyst to isolate and understand the different
forces that combine to produce the observed data sequence. By breaking down the
series, one can identify long-term movements, predictable cycles, and random noise,
which is essential for accurate modeling and the identification of unusual events.

1.1 The Core Components of a Time Series

A time series can be conceptually broken down into four fundamental components.
The systematic identification of these patterns is the first step toward building a
successful detection model.



e Trend (T): The trend represents the long-term, secular movement of the series,
indicating a general direction of increase, decrease, or stability over the entire
observed period. It reflects the varying mean of the time series data. A trend does
not need to be linear; it can be quadratic, exponential, or change direction over
time. For instance, the trend of overall vibration level from a machine developing
fault is mostly positive.

e Seasonality (S): Seasonality refers to predictable, repeating patterns or
fluctuations that occur at a fixed and known frequency. These patterns are tied to
calendar-based intervals, such as the time of day, day of the week, month, or
quarter. Examples are ubiquitous in business, nature and industrial data; for
example, surface temperature (esp of outdoor machines) contains diurnal and
yearly seasonal patterns. The key characteristic of seasonality is its constant and
predictable period.

e Irregularity / Noise / Residual (R): This component, also referred to as noise or
the error term, represents the random, unpredictable fluctuations that remain
after the trend, seasonal, and cyclical components have been removed from the
series. These variations are caused by short-term, uncontrollable events such as
sensor error, sudden change in operating condition, etc. In the context of
modeling, this residual is what is left over after accounting for the predictable
patterns.

Time Series Decomposition

@
g

Observed
8

Seasonality
|
o

Residual

0 Wﬂ”%&wmwm

Jan Jan
2021 2022




1.2 Modeling Component Interactions: Additive vs. Multiplicative Decomposition

The relationship between these components can be formalized through a
decomposition model. The choice of model depends on how the components interact
with each other, particularly how seasonality relates to the trend.

e Additive Model: An additive model is expressed as:
Yt=Tt+St+Rt
This model is appropriate when the magnitude of the seasonal variation is
relatively constant over time and does not depend on the level of the trend.

e Multiplicative Model: A multiplicative model is expressed as:
Yt=TtxStxRt
This model is necessary when the seasonal variation increases or decreases in
magnitude in proportion to the level of the trend.

A key property of the multiplicative model is that it can be converted into an

additive model by applying a logarithmic transformation
log(Yt)=log(Tt)+log(St)+log(Rt)

This transformation often stabilizes the variance and makes the series easier to

model.

The choice between an additive and multiplicative model is a critical first step in
building a robust analysis, as it forms a fundamental assumption about the
data-generating process. This decision directly impacts how "normal” behavior is
defined, which is a prerequisite for identifying deviations. The core task of anomaly
detection is to identify data points that depart from an expected pattern. This
expected pattern is defined by the series' components.

To correctly identify a contextual anomaly—one whose abnormality depends on its
context—the model must first understand the true relationship between trend and
seasonality. If a practitioner mis-specifies this relationship, for instance by using an
additive model for data where seasonality grows with the trend, the baseline for
"normal” will be incorrect. During high-trend periods, the model will expect a smaller
seasonal swing than is actually normal, leading to a high number of false positives.
Conversely, during low-trend periods, it will expect a larger swing, potentially missing
true anomalies and generating false negatives. Therefore, correct decomposition is
not a statistical formality but a mandatory precursor to accurate contextual anomaly
detection.



Section 2: The Principle of Stationarity

The concept of stationarity is one of the most important principles in time series
analysis. It provides a theoretical foundation for many classical forecasting models
and serves as a crucial data processing objective. A stationary process is one whose
statistical properties do not change over time, making it far easier to analyze and
predict than a non-stationary one.

2.1 Defining Stationarity: A Time-Invariant Process

A time series is considered stationary if its underlying statistical properties are
independent of the point in time at which they are observed. This concept is
formalized in two main ways:

e Strict Stationarity: A process is strictly stationary if the joint probability
distribution of any set of observations (Xt1,Xt2,...,Xtk) is identical to the joint
probability distribution of a time-shifted set (Xt1+h,Xt2+h,... Xtk+h) for any time
points and any time shift h. This is a very strong condition that implies all
statistical moments (mean, variance, skewness, etc.) are constant over time. In
practice, it is a difficult condition to verify and is rarely met by real-world data.

e Weak (or Covariance) Stationarity: This is a more practical and commonly used
definition. A process is weakly stationary if it satisfies three conditions:

1. The mean is constant and finite for all time: E[Xt]=p.
2. The variance is constant and finite for all time: Var(Xt)=02.

3. The autocovariance between any two observations depends only on the lag
(the time difference) between them, not on their absolute position in time.

From this definition, it follows directly that any time series exhibiting a clear trend
(a non-constant mean) or seasonality (a predictable, time-dependent pattern in
the mean) is, by definition, non-stationary.

2.2 The Importance of Stationarity in Modeling

Stationarity is a critical assumption for many classical time series models, most
notably the Autoregressive Integrated Moving Average (ARIMA) family of models. A
stationary process is fundamentally easier to analyze because its statistical
properties are consistent over time. This consistency allows models to learn the
underlying structure of the data and make more reliable forecasts. When a series is
stationary, we can assume that the patterns observed in the past will continue into the



future. By transforming a non-stationary series into a stationary one, we can
effectively apply standard regression-based techniques that would otherwise be
invalid for time-dependent variables.

The process of achieving stationarity should be viewed as more than just a data
preparation step for specific models. It is, at its core, a powerful signal isolation
technique. A time series is a composite of predictable elements (Trend, Seasonality)
and unpredictable ones (Irregularity/Noise). Anomalies are, by definition, unexpected,
rare, and irregular events that deviate from the norm; they are conceptually part of
the "Irregularity” component. The techniques used to induce stationarity, such as
differencing and detrending, are explicitly designed to remove the trend and seasonal
components. The result of this process is a stationary residual series whose
fluctuations represent the "noise" around a constant mean. Therefore, the act of
making a series stationary is the first and most fundamental step in isolating the very
signal that contains the anomalies. Any anomaly detection method that operates
on the statistical properties of the data, such as thresholding based on
standard deviations, will perform more reliably and accurately on these
stationary residuals than on the raw, non-stationary data.

2.3 Validating Stationarity: Visual and Statistical Tests

Before applying transformations, one must first determine if a series is non-stationary.
This can be done through both visual inspection and formal statistical tests.

e Visual Inspection: A simple time plot of the data is often the first and most
intuitive check. Obvious upward or downward trends, or clear changes in the
variance (e.g., the fluctuations becoming wider or narrower over time), are strong
visual indicators of non-stationarity. Another simple method is to split the series
into two or more contiguous parts and compare their summary statistics (mean,
variance); significant differences suggest non-stationarity.

e Statistical Tests: For a more objective and rigorous assessment, unit root tests
are employed. A "unit root" is a feature of some stochastic processes that can
cause problems in statistical inference involving time series models. The presence
of a unit root is a mathematical confirmation of non-stationarity. The two most
common tests for this are the Augmented Dickey-Fuller (ADF) test and the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. It is crucial to understand that
these two tests operate with opposing null hypotheses.

o Augmented Dickey-Fuller (ADF) Test: The null hypothesis (HO) of the ADF
test is that the time series is non-stationary (i.e., it possesses a unit root).



The alternative hypothesis is that the series is stationary. Therefore, a low
p-value (typically < 0.05) provides evidence to reject the null hypothesis and
conclude that the series is stationary.

o Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test: The null hypothesis (HO)
of the KPSS test is that the time series is stationary around a deterministic
trend. The alternative is non-stationarity. In this case, a low p-value (< 0.05)
leads to the rejection of the null hypothesis, suggesting that the series is
non-stationary and requires differencing.

The opposing nature of these hypotheses can be a source of confusion, but using
them in tandem can provide a more robust conclusion. For example, if the ADF test
fails to reject non-stationarity and the KPSS test rejects stationarity, one can be very
confident that the series is non-stationary.

Table 2.1: Comparison of Stationarity Tests (ADF vs. KPSS)

To prevent common misinterpretations of test results, the following table provides a
clear, at-a-glance reference for these two fundamental tests.

Feature

Augmented Dickey-Fuller
(ADF)

Kwiatkowski-Phillips-Schmidt-
Shin (KPSS)

Null Hypothesis (HO)

The series is non-stationary
(has a unit root).

The series is stationary
(around a mean or trend).

non-stationary.

p-value < 0.05 Reject HO: The series is Reject HO: The series is
stationary. non-stationary.
p-value > 0.05 Fail to Reject HO: The series is Fail to Reject HO: The series is

stationary.

Primary Use

To test if differencing is
required.

To confirm if a series is
already stationary.

2.4 Achieving Stationarity: Common Transformations

If a time series is found to be non-stationary, it must be transformed before it can be
used with many classical models. Several techniques exist to achieve this.




e Differencing: This is the most common method for removing a trend. First-order
differencing involves creating a new series by subtracting the previous
observation from the current observation: Yt'=Yt-Yt-1. This transformation
effectively removes a linear trend. If the trend is quadratic, second-order
differencing (Yt''=Yt'-Yt-1') may be necessary, though it is rare to require more
than two levels of differencing. If seasonality is present, it can be removed with
seasonal differencing, where the observation from the previous season is
subtracted:

Yt'=Yt-Yt-m, where m is the seasonal period (e.g., 12 for monthly data).

Original Non-Stationary Series

First-Order Differenced (Stationary) Series

=]

N
=3

1
=3

Differenced Value
IS

IS
S

-60
Jan Jul Jan Jul Jan Jul
2020 2021 2022

time

e Power Transformations: When the variance of a series is not constant (a
condition known as heteroscedasticity), a power transformation can be applied to
stabilize it. This should typically be done before differencing. The most common
transformations are the logarithm, square root, or cube root. A log transform is
particularly effective for data exhibiting exponential growth, as it can convert the
exponential trend into a linear one, which can then be removed by differencing.

e Detrending: An alternative to differencing is to explicitly model and remove the
trend. This can be done by fitting a regression model (e.g., linear or quadratic)
with time as the predictor variable and then subtracting the fitted trend line from
the original series. The remaining residuals should form a stationary series.

Section 3: Analyzing Temporal Dependencies with Correlation Functions

Once a time series is stationary, the next step is to investigate the structure of its



temporal dependencies. This is accomplished by analyzing the correlation between an
observation and its past values. The primary tools for this analysis are the
Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF).
These functions are indispensable for understanding the memory of a process and for
identifying the appropriate structure of ARIMA models.

3.1 The Autocorrelation Function (ACF): Measuring Total Correlation

The Autocorrelation Function (ACF) measures the linear relationship between a time
series and its lagged values. Specifically, the ACF at lag k calculates the correlation
coefficient between observations that are k time steps apart, i.e., the correlation
between Xt and Xt-k.

An important characteristic of the ACF is that it measures the total correlation. This
includes both the direct correlation between Xt and Xt-k and any indirect correlation
that is mediated through the intervening lags (Xt-1,Xt-2,..., Xt-k+1). For example, a
strong correlation at lag 2 could be due to Xt-2 directly influencing Xt, or it could be
an artifact of Xt-2 strongly influencing Xt-1, which in turn strongly influences Xt. The
ACF captures both of these effects.

When plotted, the ACF provides strong visual cues about the nature of the time
series. A plot of a non-stationary series will typically show an ACF that decays
very slowly to zero, as each observation is highly correlated with its recent
predecessors due to the trend. For a stationary series, significant spikes at
regular intervals (e.g., at lags 12, 24, 36 for monthly data) are a clear indicator of
seasonality.

3.2 The Partial Autocorrelation Function (PACF): Isolating Direct Correlation

The Partial Autocorrelation Function (PACF) provides a more refined view of temporal
dependence. The PACF at lag k measures the correlation between Xt and Xt-k after
removing the linear influence of the intermediate lags (Xt-1,Xt-2,..., Xt-k+1). In
essence, it isolates the direct relationship between two observations at a specific lag,
controlling for the effects of the shorter lags.

This ability to measure direct correlation makes the PACF the primary tool for
identifying the order of an Autoregressive (AR) process. An AR(p) process is one
where the current value is a linear combination of the p previous values. The PACF of
such a process will show a significant spike at lag p and then abruptly cut off to zero
(or within the confidence interval) for all subsequent lags.



100 Autocorrelation Function (ACF) 10 Partial Autocorrelation Function (PACF)

0.75 075
0.50 0.50

0.25 025

0.00 — 0.00 —
-0.25 -0.25

3.3 Application in Model Identification: The ARIMA Framework

The combined analysis of ACF and PACF plots is the cornerstone of the Box-Jenkins
methodology for identifying the parameters of ARIMA models.

An ARIMA(p, d, g) model has three components:

e AR(p) - Autoregressive: This component specifies that the current value of the
series is regressed on its own p previous values. The order p is determined by
examining the PACF plot, which should exhibit a sharp cutoff after lag p.

e I(d) - Integrated: This component specifies the number of times d that the raw
data has been differenced to achieve stationarity. This is determined prior to
ACF/PACF analysis using the methods described in Section 2.

e MA(q) - Moving Average: This component specifies that the current value is a
function of the g previous forecast errors (or random shocks). The order q is
determined by examining the ACF plot, which should exhibit a sharp cutoff after

lag g.

For data with strong seasonality, the SARIMA(p, d, q)(P, D, Q)m model is used. This is
an extension of ARIMA that adds seasonal components. The parameters (P, D, Q)
are the seasonal counterparts to (p, d, ), and m represents the length of the
seasonal period (e.g., m=12 for monthly data with a yearly pattern). This model is
necessary when seasonality is a significant factor that a standard ARIMA model
cannot adequately capture.

Beyond their classical use for identifying a single, static model for an entire series,
correlation functions can be adapted into dynamic feature engineering tools for
detecting more complex anomalies. The expected correlation structure of a process is



a key part of its "normal” behavior. A sudden change or break in this correlation
structure is, itself, a type of anomaly. An anomaly is a deviation from the norm, and
this "norm" encompasses not just the values of the data but also their
interrelationships. A "pattern change” or "shapelet” anomaly might not involve
extreme point values but could manifest as a shift in how current values relate
to past values. Instead of computing a single ACF and PACF for the entire series,
one could compute these functions over a rolling window. This process would
generate a new time series for each significant lag, where the values are the ACF or
PACF coefficients at that lag. A significant and abrupt change in this new time series
of correlation coefficients would signal a structural break in the underlying process.
This represents a sophisticated, collective anomaly that would be entirely invisible to
simple point-based detectors. This technique elevates ACF and PACF from static
analysis tools to dynamic feature generators for advanced, state-aware anomaly
detection systems.

Table 3.1: ACF/PACF Signature Patterns for Model Identification

The following table provides a classic reference for interpreting correlograms, a
fundamental skill for translating the visual patterns of the plots into concrete model
specifications for stationary data.

Process ACF Behavior PACF Behavior

AR(p) Tails off (decays exponentially Cuts off sharply after lag p
or with a damped sine wave)

MA(q) Cuts off sharply after lag q Tails off (decays exponentially
or with a damped sine wave)

ARMA(p,q) Tails off (begins after lag q) Tails off (begins after lag p)




Part Il: A Guide to Time Series Anomaly Detection



Having established the foundational principles of time series analysis, this part of the
report transitions to the primary focus: the detection of anomalies. Anomaly
detection, also known as outlier or novelty detection, is the process of identifying
data points, events, or observations that deviate significantly from the
expected pattern of a dataset. In the context of time series, these deviations can
signal critical events such as operating condition change, sensor issue, faults, etc.
This section provides a systematic exploration of anomaly detection, beginning with a
formal classification of anomaly types and then proceeding to a deep, comparative
analysis of three major methodological families: distance-based, density-based,
and deep learning approaches.

Section 4: A Taxonomy of Anomalies

The effectiveness of any anomaly detection system is critically dependent on a clear
understanding of the type of anomaly it is designed to find. Not all anomalies are
created equal, and an algorithm optimized for one type may be completely blind to
another. The literature broadly classifies anomalies into three primary categories,
which serve as a foundational taxonomy for the field.

e Point Anomalies: A point anomaly is an individual data point that deviates
sharply and significantly from the rest of the data. Also known as a global outlier,
this is the simplest and most common form of anomaly. These anomalies typically
represent one-off events, measurement errors, or system glitches that cause
a value to fall far outside the normal range. For example, in a dataset of daily
temperature readings, a single reading of an impossibly high temperature would
be a point anomaly. Their distinct and isolated nature makes them relatively
straightforward to detect with statistical methods like Z-scores or simple
distance measures.

e Contextual (or Conditional) Anomalies: A contextual anomaly is a data point
that is considered anomalous only within a specific context. The value of the data
point itself may not be extreme or unusual in a broader sense, but its occurrence
at a particular time or under specific circumstances makes it abnormal. The
context provides the baseline for expected behavior. Detecting these anomalies
requires the model to understand the context, such as the running speed of the
machine, seasonality, time of day, or other recurring patterns.

e Collective Anomalies: A collective anomaly occurs when a sequence or
collection of related data points is anomalous as a group, even if each individual
point within the sequence appears normal in isolation. The anomaly lies in the
combined behavior or pattern of the group. This often indicates a sustained issue,



a systemic shift, or a coordinated event. For example, a slight but persistent daily
drop in the volume of data processed by a pipeline might not trigger any alarms
on a single day. However, the collective downward trend over a week is an
anomalous pattern that signals a developing problem.

This anomaly taxonomy is not merely a descriptive classification; it serves as a
prescriptive framework that directly dictates the necessary capabilities of the
detection algorithm. There is a direct mapping from the type of anomaly being
targeted to the required model architecture and its level of awareness.

1. Point anomalies are defined by their value in isolation from others. This implies
that a stateless algorithm, which evaluates each point individually against a global
or local threshold (such as a Z-score or a simple distance-based score), is
sufficient for their detection.

2. Contextual anomalies are defined by their value relative to their temporal
context. This implies that the algorithm must be context-aware. It needs to
model or be explicitly provided with information about recurring patterns like
seasonality or time of day to establish a context-specific baseline for what
constitutes "normal" behavior.

3. Collective anomalies are defined by the behavior of a sequence of points as a
whole. This implies that the algorithm must be stateful or sequence-aware. It
cannot evaluate points individually but must process a window or sequence of
data to identify anomalous patterns. This requirement points directly toward
models like Recurrent Neural Networks (e.g., LSTMs) or Temporal Convolutional
Networks (TCNs), which are explicitly designed to process sequences and
maintain an internal state or memory.

A practitioner who fails to match the algorithm's capability to the target
anomaly type is destined to fail. Attempting to find a collective anomaly with a
point-based Z-score method is conceptually flawed and will not work. Likewise, trying
to find a contextual anomaly without providing seasonal or temporal context to the
model is equally bound to fail. Therefore, a clear characterization of the target
anomaly type is the first and most crucial step in designing an effective detection
solution.

Section 5: Distance-Based Detection: The k-Nearest Neighbors (k-NN) Approach

Distance-based methods are among the most intuitive approaches to anomaly
detection. They operate on a simple yet powerful premise: normal data points tend to



exist in dense neighborhoods, while anomalous points are isolated and lie far from
their peers in the feature space. The k-Nearest Neighbors (k-NN) algorithm is a
classic and widely used example of this approach.

5.1 Core Principle: Anomalies as Isolated Points

The k-NN algorithm is a non-parametric, instance-based, or "lazy" learning method. It
is considered "lazy" because it does not build an explicit model during a training
phase; instead, it stores the entire training dataset and performs computations only at
the time of prediction or inference. For anomaly detection, the core assumption is that
an anomalous data point will have a much larger distance to its nearest
neighbors compared to a normal data point.

5.2 Algorithmic Breakdown for Anomaly Detection

The application of k-NN for anomaly detection is a straightforward, multi-step
process:

1. Select the Hyperparameter k: The analyst must first choose the number of
neighbors, k, to consider for each point. This is a critical hyperparameter that
significantly influences the algorithm's performance.

2. Calculate Distances: For a given data point (either from the training set or a
new, unseen point), its distance to every other point in the dataset is calculated.
Several distance metrics can be used, with the choice depending on the nature of
the data. The most common is the Euclidean distance for continuous, numerical
data. Other options include the Manhattan distance (also for continuous data)
and the Hamming distance for categorical data. The Euclidean distance
between two vectors p and g in an n-dimensional space is given by:

A, = L = pi)’

1

3. Identify Nearest Neighbors: After calculating all distances, the k points with the
smallest distances to the target point are identified as its nearest neighbors.

4. Calculate Anomaly Score: The anomaly score for the target point is then
calculated based on these neighbors. A common and effective method is to
define the anomaly score as the distance to the k-th nearest neighbor. A point
with a significantly larger score than most other points in the dataset is flagged
as an anomaly. Another approach is to use the average distance to all
k nearest neighbors.



Anomaly Detection using k-Nearest Neighbors (k-NN)

—— Normal Data
> True Anomaly
(O kNN Detected Anomaly

150

100

Value

50

X

2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09
Time

5.3 Advantages and Critical Limitations

The k-NN algorithm offers several advantages that make it an attractive baseline
method for anomaly detection.

e Advantages: Its primary strengths are its simplicity and intuitiveness. The logic is
easy to understand and implement from scratch. As a non-parametric method, it
makes no assumptions about the underlying distribution of the data.
Furthermore, because it has no explicit training phase, it can easily adapt to new
data points as they become available.

¢ Limitations: Despite its simplicity, k-NN suffers from several significant
drawbacks that limit its applicability in many modern scenarios.

o Computational Complexity: The need to calculate the distance from a target
point to every other point in the dataset makes the algorithm computationally
expensive. The complexity is typically O(N2) for a dataset of size N, which
becomes prohibitive for large datasets.

o Parameter Sensitivity: The performance of k-NN is highly sensitive to the
choice of the hyperparameter k. A small value of k can make the model
susceptible to noise, where small, insignificant clusters might be incorrectly
flagged as anomalies. Conversely, a large value of k can cause the
algorithm to overlook smaller, more localized anomalies.

o The Curse of Dimensionality: This is arguably the most critical limitation of



k-NN and other distance-based methods. In high-dimensional feature
spaces, the concept of distance becomes less meaningful. As the number
of dimensions increases, the distance between any two points in the space
tends to become almost equal. This phenomenon severely degrades the
performance of k-NN, as it becomes difficult to distinguish between "near"
and "far" neighbors.

The "curse of dimensionality" is not just a theoretical concern but a practical barrier
that defines the utility of k-NN in modern time series analysis. While k-NN can be an
effective and interpretable baseline model for finding point anomalies in univariate or
low-dimensional multivariate series, it is theoretically and practically ill-suited for
the high-dimensional data commonly generated by loT sensors, financial
systems, and industrial monitoring equipment. The algorithm's core mechanism—the
distance metric—becomes unreliable in these settings. This establishes a clear,
practical guideline for practitioners: if the time series has a low number of dimensions
(e.g., fewer than 10), k-NN is a reasonable starting point. However, if the
dimensionality is high, its use is discouraged. In such cases, methods with implicit or
explicit dimensionality reduction capabilities, such as Autoencoders or Isolation
Forests, should be considered immediately, as they are designed to overcome this
fundamental challenge.

Section 6: Density-Based Detection: The Local Outlier Factor (LOF) Algorithm

Density-based methods offer a more nuanced approach to anomaly detection than
simple distance-based techniques. Instead of just measuring isolation, they consider
the density of a point's local neighborhood. The Local Outlier Factor (LOF) algorithm
is a seminal and powerful example of this approach, designed to identify outliers by
measuring their degree of isolation relative to their surrounding neighborhood.

6.1 Core Principle: Relative Density as an Anomaly Indicator

LOF is an unsupervised, density-based algorithm that assigns an anomaly score to
each data point by measuring its local density deviation with respect to its neighbors.
The fundamental idea behind LOF is that an anomalous point will have a
substantially lower local density than its neighbors, making it a "local" outlier. This
focus on local, relative density allows LOF to successfully identify anomalies in
datasets where different regions have different densities, a scenario where global
distance-based methods might fail.

6.2 Algorithmic Breakdown: From Distance to a Factor Score

The LOF algorithm builds upon concepts from k-NN but computes a more



sophisticated score through a series of steps:

1. k-distance of a point: For any given point A, its k-distance is defined as the
distance to its k-th nearest neighbor. This establishes the radius of the local
neighborhood.

2. Reachability Distance (RD): The reachability distance of a point A from a neighbor
B is defined as the maximum of either the true distance between A and B or the
k-distance of B.

RDk(A,B)=max(k-distance(B),d(A,B))

This has a smoothing effect: for points A that are very close to B (i.e., within B's
dense neighborhood), their reachability distance from B is capped at B's
k-distance. This prevents points in a dense cluster from having artificially low
reachability distances.

3. Local Reachability Density (LRD): The LRD of a point A is the inverse of the
average reachability distance from A to all of its k nearest neighbors.

4. Local Outlier Factor (LOF): Finally, the LOF score of point A is calculated as the
ratio of the average LRD of its k neighbors to its own LRD.

This score is a measure of how isolated a point is relative to its surrounding
neighborhood.

Anomaly Detection using Local Outlier Factor (LOF)

—— Normal Data
X True Anomaly

A i}
LOF Detected Anomaly / w
!

150

Val
3
—
X

| Mg

2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09
Time




6.3 Interpretation and Application
The resulting LOF score for each point is interpreted as follows:

e LOF = 1: The point has a density similar to its neighbors and is considered an
inlier.

e LOF < 1: The point is in a region that is denser than its neighbors, making it a
strong inlier.

e LOF > 1: The point is in a region that is less dense (more sparse) than its
neighbors, indicating it is a potential outlier or anomaly.

In practice, a threshold is set on the LOF score (e.g., 1.5 or 2.0) to formally classify
points as anomalies. As with k-NN, the choice of the neighborhood size k (often
referred to as n_neighbors or minPts in software libraries) is a critical hyperparameter
that must be tuned for the specific dataset.

6.4 Strengths and Weaknesses

e Strengths: The primary advantage of LOF is its ability to identify local outliers in
datasets with clusters of varying densities. A point that is part of a sparse cluster
might have a large distance to its neighbors, but if its neighbors are also part of
that same sparse cluster, its LOF score will be close to 1. A global method might
incorrectly flag all points in that sparse cluster as anomalies.

e Weaknesses: LOF shares some of the same limitations as k-NN. It can be
computationally expensive due to the numerous distance calculations. It is also
sensitive to the choice of k and can produce a high rate of false positives if not
carefully tuned. Furthermore, while more robust than k-NN, it can still suffer from
the curse of dimensionality in very high-dimensional spaces.

The true innovation of LOF lies in its use of a relative density measure. This relativity
makes it uniquely suited for analyzing time series that exhibit natural shifts in volatility
or behavior, often referred to as regime changes. Such shifts are common in financial
markets and industrial operational data. Consider a stock price time series that has
periods of stable, low volatility (forming a dense cluster of data points) and periods of
turbulent, high volatility (forming a sparser cluster). A simple, global density algorithm
might flag all points in the high-volatility period as anomalous simply because their
absolute density is low. LOF, in contrast, would evaluate a point within the volatile
period and observe that its neighbors are also in a sparse region. Their LRDs would be
similar, resulting in an LOF score close to 1, correctly identifying the point as part of a



"normal” (albeit volatile) regime. An anomaly for LOF would be a point that represents
a transition between regimes or a point that is isolated even from its local
neighborhood. For example, a single "flash crash" data point would be in a very
sparse region, but its immediate neighbors (from just before the crash) would be in a
dense region. This large discrepancy in local densities would yield a very high LOF
score, correctly flagging the event as anomalous. Thus, LOF's relative nature provides
robustness against the inherent non-stationarity of variance (heteroscedasticity)
found in many real-world time series.

Section 7: Deep Learning Approaches to Anomaly Detection

In recent years, deep learning has emerged as the state-of-the-art paradigm for a
wide range of machine learning tasks, and time series analysis is no exception. Deep
neural networks have proven exceptionally capable of modeling the complex,
high-dimensional, and non-linear patterns that characterize modern time series data
from sources like financial markets, loT sensors, and healthcare monitoring systems.

7.1 A Modern Taxonomy of Deep Learning Models

Deep learning models for time series anomaly detection (TSAD) can be broadly
categorized based on their core strategy. This taxonomy helps to structure the vast
landscape of available architectures and understand their fundamental approaches to
identifying deviations from normalcy.

e Forecasting-Based Models: These models are trained to predict the next point
or a future sequence of points based on a window of recent historical data. The
underlying assumption is that normal, predictable data can be forecasted with
low error. An anomaly is then declared when there is a large discrepancy (a
high prediction error) between the model's forecast and the actual observed
value. Architectures like LSTMs, GRUs, and Transformers are commonly used in
this approach.

e Reconstruction-Based Models: This is the most prevalent unsupervised
approach. These models are trained to learn a compressed, low-dimensional
representation of normal data and then reconstruct the original input from
this representation. The principle is that the model will become an expert at
reconstructing normal patterns. When an anomalous input is provided, the model
will struggle to reconstruct it accurately, resulting in a high reconstruction error.
This error serves as the anomaly score. Autoencoders (AEs) and their variants
(VAEs, GANs) are the cornerstone of this approach.

e Representation-Based Models: These models focus on learning rich,



informative embeddings (representations) of the time series data in a latent
space. The goal is to learn a mapping where normal data points cluster together
and anomalies are mapped to sparse regions of the space. Anomaly detection is
then performed in this learned latent space using a secondary technique like
clustering or density estimation. Contrastive learning methods are a key example
of this strategy.

7.2 The Reconstruction Paradigm: An In-Depth Analysis of Autoencoders

The reconstruction-based approach, particularly using Autoencoders (AEs), has
become a dominant strategy for unsupervised anomaly detection in complex time
series.

e Core Principle: An Autoencoder is a type of unsupervised neural network that is
trained to reconstruct its own input. It is composed of two main parts: an
encoder, which compresses the high-dimensional input data into a
lower-dimensional latent space representation (also called a bottleneck), and a
decoder, which takes this compressed representation and attempts to
reconstruct the original input.

e Application to Anomaly Detection: The power of AEs for anomaly detection
comes from a specific training strategy: the model is trained exclusively on data
that is known to be normal. Through this process, the network becomes an
expert at learning the intricate patterns and correlations inherent in normal
data, enabling it to reconstruct normal inputs with very low error. When the
trained model is subsequently presented with an anomalous input—one that does
not conform to the learned patterns—it will be unable to reconstruct it accurately.
This failure results in a high reconstruction error, which serves as a powerful and
reliable anomaly score.

The power of the autoencoder approach can be understood as a sophisticated,
non-linear manifold learning technique. The reconstruction error is not an arbitrary
metric but a geometrically meaningful measure of a data point's distance to a learned
"manifold of normality." In geometric terms, the set of all possible "normal" data
points can be conceptualized as lying on or near a complex, lower-dimensional
surface (a manifold) that is embedded within the high-dimensional input space. By
training the AE to minimize reconstruction error exclusively on normal data, the
process effectively forces the encoder-decoder pair to learn the shape of this normal
manifold. Anomalies, by definition, do not follow these normal patterns and therefore
lie "off-manifold". When an anomalous point is passed to the encoder, it is
projected onto the learned latent space, but this projection is inherently flawed



because the point was not part of the space the AE was trained on. The decoder
then attempts to reconstruct the original point from this flawed projection,
inevitably resulting in a high error. The reconstruction error, therefore, serves as a
proxy for the distance of a data point to the learned manifold. This provides a far more
robust and nuanced definition of normalcy than linear methods like PCA or direct
distance metrics like k-NN, explaining why AEs are so powerful for complex,
high-dimensional data.

7.3 Architecture Deep Dive: LSTM Autoencoders for Sequential Data

For time series data, standard AEs with fully connected (dense) layers are insufficient
because they process each input independently and fail to capture temporal
dependencies. To address this, Long Short-Term Memory (LSTM) networks are
integrated into the autoencoder architecture. LSTMs are a special type of
Recurrent Neural Network (RNN) explicitly designed to learn from sequential
data by maintaining an internal memory or cell state, making them ideal for this task.

The architecture of an LSTM Autoencoder uses LSTM layers in both the encoder and
the decoder:

1. The Encoder consists of one or more LSTM layers that process an input
sequence (a window of time series data). It reads the sequence step-by-step and
compresses the information into a single fixed-size vector, which represents the
final hidden state of the LSTM. This vector is the latent space representation of
the entire input sequence.

2. A RepeatVector layer is then used to duplicate this latent vector, creating a
sequence of identical vectors, one for each time step of the desired output
sequence. This provides the initial input for the decoder at every time step.

3. The Decoder consists of one or more LSTM layers that take the repeated latent
vector sequence as input and work to reconstruct the original input sequence,
one time step at a time. The final output is a sequence of the same length as the
input.

Python implementations using libraries like Keras and TensorFlow demonstrate how
these layers are stacked to create the full model.

7.4 Training, Inference, and Thresholding

The process of using an LSTM Autoencoder for anomaly detection involves three key
phases:



e Training: The model is trained in a purely unsupervised manner, where the input
data also serves as the target output. The objective is for the model to learn an
identity function for normal data. The training call is typically model.fit(X_train,
X_train). The loss function used to guide the training is almost always a measure
of reconstruction error, such as Mean Squared Error (MSE) or Mean Absolute
Error (MAE), calculated between the original input and the reconstructed output.

¢ Inference: Once the model is trained, it can be used to detect anomalies in new,
unseen data. A new sequence is passed through the trained model to generate its
reconstruction. The reconstruction error for this new sequence is then calculated.

e Thresholding: This is a critical final step that translates the continuous
reconstruction error into a binary anomaly/normal classification. A threshold must
be set on the error score. A common and effective method is to first calculate the
reconstruction errors for all the sequences in the (normal) training dataset. The
distribution of these errors represents the range of "normal” error. The anomaly
threshold is then set at a high percentile of this distribution, such as the 95th or
99th percentile. Any new sequence whose reconstruction error exceeds this
threshold is flagged as an anomaly.

Anomaly Detection using LSTM Autoencoder

—— Normal Data
X True Anomaly
150 O LSTM Detected Anomaly

Model Reconstruction Error

Reconstruction Error (MAE)
12 ==~ Anomaly Threshold (0.0889)

Mean Absolute Error
o

2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09
Time

7.5 Survey of Advanced Architectures

While LSTM Autoencoders serve as a powerful and widely used baseline, the field of
deep learning for TSAD is rapidly advancing. Other key architectures that offer distinct



advantages include:

e Variational Autoencoders (VAEs): A probabilistic extension of the AE that learns
a probability distribution for the latent space rather than a single point. This
allows it to model uncertainty more effectively and can lead to more robust
anomaly detection.

e Generative Adversarial Networks (GANs): These models use a two-player
game between a generator (which creates fake data) and a discriminator (which
tries to distinguish fake from real data). For anomaly detection, the trained
discriminator can be used to identify inputs that do not conform to the learned
distribution of normal data.

e Transformers: Originally developed for natural language processing, Transformer
architectures have proven highly effective for time series. Their self-attention
mechanism allows them to weigh the importance of different time steps and
process entire sequences in parallel, enabling them to efficiently capture very
long-range dependencies that can challenge LSTMs.

Section 8: Synthesis and Recommendations

The selection of an appropriate anomaly detection algorithm is not a one-size-fits-all
decision. It requires a careful consideration of the data's characteristics, the nature of
the expected anomalies, and the computational constraints of the application. This
final section synthesizes the analyses of the distance-based, density-based, and
deep learning methods into a comparative framework and provides a practical
decision guide for practitioners.

8.1 Comparative Analysis of Detection Methodologies

The three families of algorithms—k-Nearest Neighbors, Local Outlier Factor, and
LSTM Autoencoders—operate on fundamentally different principles and exhibit
distinct trade-offs in performance, complexity, and applicability.

Table 8.1: Comparative Matrix of Anomaly Detection Algorithms

The following table distills the detailed analysis into a single, actionable
decision-making tool, comparing the methods across the key factors a data scientist
would consider when selecting a model.



Feature

k-Nearest Neighbors
(k-NN)

Local Outlier Factor
(LOF)

LSTM Autoencoder

Core Principle

Distance-based:
Anomalies are
isolated points that
are far from their
neighbors in feature
space.

Density-based:
Anomalies are
located in regions of
lower relative density
compared to their
local neighborhood.

Reconstruction-base
d: Anomalies are
patterns that the
model, trained on
normal data, cannot
accurately
reconstruct.

Primary Anomaly
Type

Point anomalies.

Point and simple
Contextual
anomalies.

Point, Contextual,
and Collective
anomalies.

Data Suitability

Best for
low-dimensional
(univariate or
few-variable
multivariate) data.
Performance
degrades severely
with high
dimensionality.

Better than k-NN for
data with varying
cluster densities, but
still struggles with
very high dimensions.

Excellent for
high-dimensional,
sequential, and
non-linear data
where temporal
patterns are critical.

Computational

Computationally

High inference cost

Computationally

Complexity expensive inference (O(N2)). No training expensive training
(O(N2)). No training phase*. phase, but very fast
phase ("lazy inference (O(N)) once
learner"). *traditionally, yes, but | the model is trained.

lof model can be
trained on normal
data and inference
data can be
compared with
normal/baseline data.
Key Advantage Simple, intuitive, and Effectively detects Learn complex

easy to implement. A
good, interpretable
baseline.

local outliers that
global methods miss.
Robust to datasets
with clusters of

temporal
dependencies and
non-linear patterns
automatically.
State-of-the-art




varying densities. performance on
complex sequential
data.

Key Disadvantage Fails in Performance Requires a large
high-dimensional degrades in very high amount of purely
spaces due to the dimensions. normal data for
“curse of training. Can be a
dimensionality." "black box," making
Highly sensitive to results difficult to
the choice of k. interpret without

additional
techniques.

8.2 A Decision Framework for Selecting the Right Model

Based on the comparative analysis, a pragmatic, step-by-step framework can guide
the selection process:

1.

Define the Anomaly First: This is the most critical step. Characterize the target
anomaly based on the taxonomy in Section 4. Is the goal to find sudden spikes
(Point), values that are unusual for a specific time (Contextual), or subtle,
developing patterns (Collective)? The answer to this question will immediately
narrow the field of appropriate algorithms.

Assess Data Characteristics: Analyze the properties of the time series data.
What is its dimensionality? Is it a single sensor reading or hundreds? How large is
the dataset? Is the data stationary or does it exhibit clear trends and seasonality?

Start Simple for Simple Problems: For low-dimensional data (e.g., univariate)
where the primary target is detecting point anomalies, begin with a simple and
interpretable baseline like k-NN or a statistical method like Isolation Forest. Their
performance will provide a valuable benchmark.

Handle Localized Complexity with Density: If the data is known to have regions
of varying density or volatility (e.g., financial data with high- and low-volatility
regimes), and the goal is to find local outliers, LOF is a superior choice to global
distance methods like k-NN.

Scale Up with Deep Learning for Complex, Sequential Data: When faced with
high-dimensional, complex, and sequential data, and especially if the target



includes subtle contextual or collective anomalies, a deep learning approach like
an LSTM Autoencoder is the most powerful and appropriate choice. Its ability to
learn temporal dependencies from raw data without manual feature engineering
is a significant advantage.

. Iterate and Evaluate: No single model is a panacea. The best practice is to
deploy a candidate model, rigorously evaluate its performance (paying close
attention to the trade-off between false positives and false negatives), and use
the results to inform further iterations, such as hyperparameter tuning or
selecting a more advanced architecture.

Thank You

You can contact us @
https://indus-analytics.com/contact/



https://indus-analytics.com/contact/

